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ABSTRACT 

We show that a wide class of separable preduals of L ~(/~) spaces, namely, the 
G spaces, introduced by Grothendieek, are isomorphic to C(K) spaces. 

While the isometric theory of preduals of LI(#) spaces is quite developed (cf. 

e.g. [5, 6, 7]), very little is known about the isomorphic classification of these 

spaces. Only recently [1], an example of a predual of ll which is not isomorphic 

o a C(K) space was constructed. 

Let us recall some definitions. A closed subspace X of C(K) is called a G space 

if  there exist x,, y, e K and numbers 2~ such that X = {f~ C(K):f(x,)=2j(y,) 

for all 7}. A subspace X of C(K) is called an M space, if it is a G space with all 

the 2, non-negative. A subspace X of C(K) is called a C~,(K) space if there exists 

a homeomorphism a of K onto itself with a 2 the identity on K, such that 

X -~ { fe  C(K) :f(x) = - f ( a x ) } .  

M spaces were introduced by Kakutani [4] who proved that they coincide with 

the closed sublattices of C(K) spaces. G spaces were introduced by Grothendieck 

[3]. 
Samuel [11] has shown that separable C,,(K) spaces are isomorphic to C(S) 

spaces (see Lemma 5). 

We shall prove here the following: 
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THEOREM. Every separable G space is isomorphic to a C(K) space. 

We shall prove the theorem by showing that every G space is isomorphic to 

a C,(K) space, and then use the result of Samuel mentioned above. 

The question whether the theorem is true for nonseparable G spaces is left open. 

We do not know whether nonseparable C,(K)spaces are isomorphic to C(K) 

spaces, and whether nonseparable G spaces are isomorphic to C,(K) spaces. 

The proof of the theorem will be based on some lemmas. 

LEMMA 1. Let Y be a separable G space on a compact Hausdorff space H. 

Then there exists a compact metric space K and a G space X on K isomorphic 

to Y, such that: 

1) K is the one-point compactification of the union of a sequence of mutually 

K disjoint compact sets { ,}n=l. 

2) Every f ~ X vanishes at infinity. 

3) I f  x e K , , y ~ K , ,  and if there i s a 2  such that f ( x )  = 2f(y)  for  every 

f ~ X ,  then 121-- 2' .- , ,  and if n = m then 2 = -1 .  

PROOF. Let F = {x~H: f ( x )  = 0 Vf~ Y}. By a standard identification pro- 

cedure, we can assume without loss of generality that F is at most a single 

point z. 

Let x~, y , ~ H  and 2, be the triples which define Y as a G space on H. Le t f ,  

be a dense sequence in the unit ball of Y and put q~ = ~] 2-" If, l" The function ff 

satisfies the following: 

i) q~ __> 0 and ~b(x) > 0 whenever x :~ z. 

ii) ~b(x~) = ]2~1 ~(Y~) for every ~. 

Put H,  = {xeH:  2-" < ~(x) < 2-"+1}, n = 1,2,..., and let K,  be disjoint 

copies of the H,'s. Let K be the one point compactification of [--J,~=l K,  with p 

as the point of infinity, and let f f : K  ~ H be the identification map, that is 

identifies K,  with H, and maps p into z. (Since, if the common zero z of the element 

of Y is an isolated point of H we can consider Y as given on H/{z} ,  we can 

assume that if there is only a finite number of H,'s, then Y has no common zero. 

In this case, we take K to be the finite union UK,  and proceed in exactly the same 

way.) 

Let r C(H) --* C(K) be the (into) isometry defined by ~b~ =f(r Denote 

by Co(K ) the space of continuous function on K vanishing at p. The subspace 

~o y of Co(K) consists of all those functions f satisfying f(u~) =/ i j ( v , ) ,  wherever 
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G, v~ a n d / ~  are such that g(~u,) = I~g(~G), for every g e Y (if ~b(G) = ~b(v~), 

we take g, = 1). Hence ~b~ is an isometric representation of Y as a G space on K. 

Define T: ~b~ ~ Co(K) by 

f-(Z"E~b~ - i f ( x )  x ~ K ,  
I 

Tf(x)  = 
o x = p .  

T is an isomorphism of ~k~ into Co(K ) (since for x E K., 1 < 2n[~~ (x) < 2), 

and T~ ~ Y is again a G space. It consists of all functions satisfying f(u~) = v.f(v~) 

where u., v. are those appearing in the definition of ~ o y  as a G space on K, and 

the v~ satisfy: 

i) sign v~ = sign /~. 

ii) If  u ~ K n ,  v ~ K , ,  then Iv~] = 2 m-n. 

The space X = TO~ and K clearly satisfy (1) and (2) and the first claim in (3). 

For x ~ K ,  put Ix] = {ye K : f ( x ) = f l y )  Yf~ X}. These are disjoint closed 

sets, and by definition, the functions in X are constant on each [x]. Hence 

we can identify each [x] to a single point. Since x ~ K ,  implies [ x ] c  K,, 

we do not identify points in different K,'s and thus (1), (2) and (3) are satisfied. 

Since X is separable and separates the points of K, K is metrizable. 

In the sequel, we shall use the following notation: K is a compact metric space, 

B a closed subset of K, and r a homeomorphism of a closed subset A of K onto 

itself, such that z 2 is the identity on A and such that B is invariant under ~, that 

is x~A~B<:~,  r x ~ A ~ B .  

LEMMA 2. Let K, A, B, z be as above, and let Z be the subspace of C(K) 

consisting of all functions f vanishing on B and satisfying f (x)  = - f ( z x )  for 

x ~ A. Then the dual space Z* of Z is isometric to the space of all Borel measures 

# on K such that Ittl (B )=  0 and such that # (S) = - # ( z S ) f o r  every Borel 

subset S of A. The correspondence is given by l~(f) = ffdlz. 

PROOF. Let z* E Z*. By the Hahn-Banach theorem and the Riesz representation 

theorem, there exists a measure v on K such that Iv I (B) = 0 with Ilv II = ]l z* I[" 

Define a new measure # by/z(S)= v(S) if S is a Borel subset of K \A and by 

�89 - v(zS)) if S is a Borel subset of A. It is easy to see that # is independent 

of the choice of v and that the map z * ~  u is a linear isometry of Z* onto the 

set of all measures # satisfying I u l (B) = 0 and #(S) = - ~L(zS) for S = A. 
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LEMMA 3. Let Z be as in Lemma 2. Then there exists a compact metric S 

and a homeomorphism a of S onto itself with a 2 the identity, such that Z is 

isometric to C,(S). 

PROOF. For  a point k e K we denote by 6k the functional on Z defined by 

 k(f) = f (k) .  
Let S = {+_6k :k~  KIB} u {0} with the co* topology. (Notice that 6k= --6,( b 

for k e A, and are thus considered as a single point in S.)Clearly S is a compact 

metric space, and a, defined by a(z*) = - z*, is a homeomorphism of S onto itself 

with a 2 the identity. The natural isometry i of Z into C(S), defined by (iz)(z*) = 

z*(z) is easily seen to be onto C~(S). 

LEMMA 4. Let K, A, B, z be as above, and define: 

Y1 = { f e  C(B) :f(x) = - f ( z x )  Vx e A r~ B} 

Y2 -- {.Ire C(K) : f(x) = - f (Tx)  Vx e A}. 

Then there exists a norm-preserving simultaneous extension operator T 

from Yl  to Y2 (i.e. operator T :  Y ,  ~ Y2 with [[ TI[ = 1 such that Tf(x) = f ( x )  

for every x e B). 

PROOF. Let A 1 - - A u B  and let T I : C ( B ) ~ C ( A 1 )  and T 2: C ( A 1 ) ~ C ( K )  

be norm-preserving simulatneous extension operators (such operators exist since K 

is metrizable; see [12]). 

Define T 3 : Y1 ~ C(A1) by 

~f(x) x e B 
Taf(x) 

[ �89 - T 1 f (zx))  x e A. 

Then [[ r 3 I[ = 1 and i f f e  YI, T f f i s  an element of  C(A,) satisfying Tf f (x )=  

- Taf(zx ) for every x e A. The operator T = T 2 T3 has the desired properties. 

The following result is due to Samuel [11]; for the sake of completeness, we 

supply a proof  (which is essentially due to Fakhoury [2]). 

LEMMA 5. Every separable C~(K) space is isomorphic to a C(H) space. 

PROOF. Let X = C~(K) with K compact metric. There is no loss of  generality 

to assume that X separates the points of K. We consider two cases: 

Case I. K is uncountable. 

We can find an uncountable closed set S such that aS c3 S = .~. Let T be the 
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extension operator we get from Lemma 4 by taking A = K, z = O" and B = S k) o'S, 

and let TI:  C(S) ~ C(S t,.) O'S) be defined by 

~f(x) x e S 
Tlf(x) " 1  

t . - f (o 'x)  x e as.  

Then TT~ is an isometric embedding of C(S) into C~(K). 

By a theorem of Milutin [9], C(S) is isomorphic to C(K), and since C~(K) is 

complemented in C(K) (with the projection Pf(x) = �89 we get by 

a theorem of Pelczyfiski [10] that C,,(K) is isomorphic to C(K). 

Case II. K is countable. 

By [8], there exists a countable ordinal a such that K is homeomorphic to the 

set [a] of all ordinals ~ with ~ < a, equipped with the order topology. Let flo--< a 

be the fixed point if O" (if there is one), and define 

K1 = {fl _6_< ___ O'(fl)} 

= -__ fl >= 

Then Kt,  K2 are closed, [a] = Ki  t3 K2, K1 nK2={flo} and O" is a homeo- 

morphism of K~ onto K2. 

The operator T defined by 

Tf(x) = 
f(x) x e K  1 

-f(o'x) x e K2 

is an isometry of Co(K1) (the space of all continuous functions on K1 vanishing 

at rio) onto C,(K). Since Co(K1) is isomorphic to C(K~), we get that C,,(K) is isom- 

orphic to C(KI). 

PROOF OF THE THEOREM. Let X be a separable G space, and assume that it 

is given on a space K as in Lemma 1. Define closed subsets A n and B n of Kn by 

An = {x ~ Kn : ?4' e Kn such that f(x)  = - f ( y )  Vfe X} n = 1,2,..., 

nn = (x ~ Kn : 3;t ~y ~ U Km such that f (x)  = 2f(y) Vf~ X} n = 2,3.... 
m < n  

Put A = t_)An, B = UBn and for x ~ A, define zx to be the unique point satisfying 

(x) = - f ( zx )  for every f ~  X (define zp = p where p is the point of infinity). 

It is easy to check that K, A, B, ~ satisfy the assumptions of Lemmas 2-4 and that 

for each n, z maps A,, onto itself. 
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Y1 = { fe  C(B) :f(x) = - f ( z x )  Vx E A (3 B} 

Y2 = { fe  C(K) :f(x) = - f (zx)  Vx e A} 

Z = { f e  Y2 : f  vanishes on B}. 

Let T:  Y~ --, Y2 be the extension operator given by Lemma 4 and R: C(K)~ 

C(B) be the restriction operator. 

Define S: X ~ Z by S = I - TR. Since II 7 II = 1 and since [] Rf]l < �89 Ilfll 

for f e X ,  we get that �89 tlfll = IISfll < 3/e [tfl[ for e v e r y f e X ,  and hence, S is 

an isomorphism of X into Z. By Lemmas 3 and 5, we only have to show that S 

is onto Z. 

If  SX r Z, then there exists a # e  Z*, II ~ II = 1, such that # annihilates SX. 

Since by Lemma 2 (n> = 0, we can find closed subsets C. of K.  with 

C. r i B .  = ~ such that I l z l (uc . )  < 1 -  1/10, and since every B. is invariant 

under z, we can also assume that C. is invariant under z. 

Let f be a continuous function on C = WC., vanishing at p with ILTII = 1, 
and such that ffd# > 1 - 2/10. Since # is antisymmetric on subsets of A, we can 

assume that f (x)  = - f ( z x )  whenever x e A n C. We shall show that f can be 

extended to an element f of X with Ilfll -- 1. We def inef  on K.  by induction on n. 

For  n = 1, we use Lemma 4 to extend f from C1 to K1 preserving its norm and 

the relation f(x) = - f ( z x )  for x e A 1. After n steps, f is already defined on 

urn__<. Km and has a unique extension to B.+ ~ preserving t he relations satisfied by 

the elements of X. Again we use Lemma 4 to extend f from C. + ~ UB~ + 1 to all K. + 1. 

In this way, we get a funct ionfdefined on K, continuous on each K.  and satisfy- 

ing all the relations satisfied by elements of X, and we only have to show that 

sup  lf(x)l : x ~ g , ~  tends to zero. 

Let N be such that sup { I f ( x ) ] : x  e C,} < �89 for n > N. Sinse also If(x)[ < �89 

for each x e B,, and since the extension was norm preserving on each K,, it follows 

that sup {[f(x) l :x ~ K,} < �89 for every n > N. A similar argument shows that 

if N is such that n > N implies sup (If(x l _< 2-k, then sup {[f(x)[" 

x e K,} < 2-k for each n > N + k, which proves that f is also co ntinuous at p 

and thus belongs to X. 

Now #(f) > f c fd t t - fK \c  ] f l d l #  I > 1 - 3 / 1 0  and since [[TRf[[ < �89 we get 

that I p(rRf) l  < 1. Hence we get that #(S f )=#( f ) -p (WRf )>  1 - 3 / 1 0 - 1 / 2 > 0 ,  

a contradiction. Q .E .D .  
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Note Added in Proof: I t  should  be no ted  tha t  the p r o o f  given here  appl ies  

to real  va lued  funct ions  only.  However ,  by sui table modif ica t ions ,  it  can be shown 

tha t  the t heo rem is t rue  in the complex  case as well. 
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